115 research outputs found

    The Vortex-Wave equation with a single vortex as the limit of the Euler equation

    Full text link
    In this article we consider the physical justification of the Vortex-Wave equation introduced by Marchioro and Pulvirenti in the case of a single point vortex moving in an ambient vorticity. We consider a sequence of solutions for the Euler equation in the plane corresponding to initial data consisting of an ambient vorticity in L1∩L∞L^1\cap L^\infty and a sequence of concentrated blobs which approach the Dirac distribution. We introduce a notion of a weak solution of the Vortex-Wave equation in terms of velocity (or primitive variables) and then show, for a subsequence of the blobs, the solutions of the Euler equation converge in velocity to a weak solution of the Vortex-Wave equation.Comment: 24 pages, to appea

    Young Measures Generated by Ideal Incompressible Fluid Flows

    Full text link
    In their seminal paper "Oscillations and concentrations in weak solutions of the incompressible fluid equations", R. DiPerna and A. Majda introduced the notion of measure-valued solution for the incompressible Euler equations in order to capture complex phenomena present in limits of approximate solutions, such as persistence of oscillation and development of concentrations. Furthermore, they gave several explicit examples exhibiting such phenomena. In this paper we show that any measure-valued solution can be generated by a sequence of exact weak solutions. In particular this gives rise to a very large, arguably too large, set of weak solutions of the incompressible Euler equations.Comment: 35 pages. Final revised version. To appear in Arch. Ration. Mech. Ana

    On the stability of travelling waves with vorticity obtained by minimisation

    Get PDF
    We modify the approach of Burton and Toland [Comm. Pure Appl. Math. (2011)] to show the existence of periodic surface water waves with vorticity in order that it becomes suited to a stability analysis. This is achieved by enlarging the function space to a class of stream functions that do not correspond necessarily to travelling profiles. In particular, for smooth profiles and smooth stream functions, the normal component of the velocity field at the free boundary is not required a priori to vanish in some Galilean coordinate system. Travelling periodic waves are obtained by a direct minimisation of a functional that corresponds to the total energy and that is therefore preserved by the time-dependent evolutionary problem (this minimisation appears in Burton and Toland after a first maximisation). In addition, we not only use the circulation along the upper boundary as a constraint, but also the total horizontal impulse (the velocity becoming a Lagrange multiplier). This allows us to preclude parallel flows by choosing appropriately the values of these two constraints and the sign of the vorticity. By stability, we mean conditional energetic stability of the set of minimizers as a whole, the perturbations being spatially periodic of given period.Comment: NoDEA Nonlinear Differential Equations and Applications, to appea

    Global existence of solutions for the relativistic Boltzmann equation with arbitrarily large initial data on a Bianchi type I space-time

    Full text link
    We prove, for the relativistic Boltzmann equation on a Bianchi type I space-time, a global existence and uniqueness theorem, for arbitrarily large initial data.Comment: 17 page

    The Mean-Field Limit for a Regularized Vlasov-Maxwell Dynamics

    Full text link
    The present work establishes the mean-field limit of a N-particle system towards a regularized variant of the relativistic Vlasov-Maxwell system, following the work of Braun-Hepp [Comm. in Math. Phys. 56 (1977), 101-113] and Dobrushin [Func. Anal. Appl. 13 (1979), 115-123] for the Vlasov-Poisson system. The main ingredients in the analysis of this system are (a) a kinetic formulation of the Maxwell equations in terms of a distribution of electromagnetic potential in the momentum variable, (b) a regularization procedure for which an analogue of the total energy - i.e. the kinetic energy of the particles plus the energy of the electromagnetic field - is conserved and (c) an analogue of Dobrushin's stability estimate for the Monge-Kantorovich-Rubinstein distance between two solutions of the regularized Vlasov-Poisson dynamics adapted to retarded potentials.Comment: 34 page

    On admissibility criteria for weak solutions of the Euler equations

    Full text link
    We consider solutions to the Cauchy problem for the incompressible Euler equations satisfying several additional requirements, like the global and local energy inequalities. Using some techniques introduced in an earlier paper we show that, for some bounded compactly supported initial data, none of these admissibility criteria singles out a unique weak solution. As a byproduct we show bounded initial data for which admissible solutions to the p-system of isentropic gas dynamics in Eulerian coordinates are not unique in more than one space dimension.Comment: 33 pages, 1 figure; v2: 35 pages, corrected typos, clarified proof

    Steady nearly incompressible vector fields in 2D: chain rule and renormalization

    Get PDF
    Given bounded vector field bcolonRRdoRRdbcolon RR^d o RR^d, scalar field ucolonRRdoRRucolon RR^d o RR and a smooth function etacolonRRoRReta colon RR o RR we study the characterization of the distribution div(eta(u)b)div(eta(u)b) in terms of divbdiv b and div(ub)div(u b). In the case of BVBV vector fields bb (and under some further assumptions) such characterization was obtained by L. Ambrosio, C. De Lellis and J. Mal'y, up to an error term which is a measure concentrated on so-called emph{tangential set} of bb. We answer some questions posed in their paper concerning the properties of this term. In particular we construct a nearly incompressible BVBV vector field bb and a bounded function uu for which this term is nonzero. For steady nearly incompressible vector fields bb (and under some further assumptions) in case when d=2d=2 we provide complete characterization of div(eta(u)b)div(eta(u) b) in terms of divbdiv b and div(ub)div(u b). Our approach relies on the structure of level sets of Lipschitz functions on RR2RR^2 obtained by G. Alberti, S. Bianchini and G. Crippa. Extending our technique we obtain new sufficient conditions when any bounded weak solution uu of dtu+bcdotablau=0d_t u + b cdot abla u=0 is emph{renormalized}, i.e. also solves dteta(u)+bcdotablaeta(u)=0d_t eta(u) + b cdot abla eta(u)=0 for any smooth function etacolonRRoRReta colonRR o RR. As a consequence we obtain new uniqueness result for this equation

    On the global well-posedness for the Boussinesq system with horizontal dissipation

    Full text link
    In this paper, we investigate the Cauchy problem for the tridimensional Boussinesq equations with horizontal dissipation. Under the assumption that the initial data is an axisymmetric without swirl, we prove the global well-posedness for this system. In the absence of vertical dissipation, there is no smoothing effect on the vertical derivatives. To make up this shortcoming, we first establish a magic relationship between urr\frac{u^{r}}{r} and ωΞr\frac{\omega_\theta}{r} by taking full advantage of the structure of the axisymmetric fluid without swirl and some tricks in harmonic analysis. This together with the structure of the coupling of \eqref{eq1.1} entails the desired regularity.Comment: 32page

    Nonlinear stabilitty for steady vortex pairs

    Full text link
    In this article, we prove nonlinear orbital stability for steadily translating vortex pairs, a family of nonlinear waves that are exact solutions of the incompressible, two-dimensional Euler equations. We use an adaptation of Kelvin's variational principle, maximizing kinetic energy penalised by a multiple of momentum among mirror-symmetric isovortical rearrangements. This formulation has the advantage that the functional to be maximized and the constraint set are both invariant under the flow of the time-dependent Euler equations, and this observation is used strongly in the analysis. Previous work on existence yields a wide class of examples to which our result applies.Comment: 25 page

    Stochastic Lagrangian Particle Approach to Fractal Navier-Stokes Equations

    Full text link
    In this article we study the fractal Navier-Stokes equations by using stochastic Lagrangian particle path approach in Constantin and Iyer \cite{Co-Iy}. More precisely, a stochastic representation for the fractal Navier-Stokes equations is given in terms of stochastic differential equations driven by L\'evy processes. Basing on this representation, a self-contained proof for the existence of local unique solution for the fractal Navier-Stokes equation with initial data in \mW^{1,p} is provided, and in the case of two dimensions or large viscosity, the existence of global solution is also obtained. In order to obtain the global existence in any dimensions for large viscosity, the gradient estimates for L\'evy processes with time dependent and discontinuous drifts is proved.Comment: 19 page
    • 

    corecore